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Abstract. We elaborate theoretically a model of addressable parallel cavity-based quantum memory for
light able to store multiple transverse spatial modes of the input light signal of finite duration and, at the
same time, a time sequence of the signals by side illumination. Having in mind possible applications for,
e.g., quantum repeaters, we reveal the addressability of our memory, that is, its handiness for the read-out
on demand of a given transverse quantized signal mode and of a given signal from the time sequence.
The addressability is achieved by making use of different spatial configurations of pump wave during the
write-in and the readout. We also demonstrate that for the signal durations of the order of few cavity
decay times, better efficiency is achieved when one excites the cavity with zero light-matter coupling and
finally performs fast excitation transfer from the intracavity field to the collective spin. On the other hand,
the light-matter coupling control in time, based on dynamical impedance matching, allows to store and
retrieve time restricted signals of the on-demand smooth time shape.

1 Introduction

Quantum memory for light is an essential part of quantum
information protocols, such as quantum repeaters, dis-
tributed quantum computation, and quantum networks. A
number of approaches based on storage in atomic ensem-
bles and inhomogeneously broadened solid-state systems
were developed recently (for reviews see [1–3]). The quan-
tum non-demolition (QND) memory with the fidelity up
to 70% was achieved [4] in cesium vapor. Recently there
were reported the recall efficiencies of 69% for the opti-
cal gradient echo in praseodymium doped crystal [5] and
of 87% with warm rubidium vapor [6].

A natural approach to the improvement of overall stor-
age capacity is to develop multimode quantum memories.
In particular, a possibility to store multiple temporal or
spatial modes and to read-out one of the stored quantum
signals in dependence on the outcome of an entangling
Bell-type measurement performed at a remote station,
promises a speed-up of quantum repeaters protocols by
a factor, proportional to the number of stored modes [7].

Of particular interest might be the spatially mul-
timode memories exploiting optical parallelism, where
the number of stored modes is limited by diffraction
or even by geometric aperture of atomic ensemble in
some configurations. There were demonstrated theoreti-
cally the spatially-multimode QND quantum memory for
images [8] and the spatially resolving off-resonant Raman-
type memory [9]. The quantum volume hologram of ref-
erences [10,11] combines the Raman-type interaction with
non-collinear configuration of the interacting waves similar
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to classical volume hologram. The memories based on the
on-resonant interaction in Λ-schemes were extended to
spatially-multimode case for the fast and adiabatic [12,13]
modes of operation. An extensive numerical 3D analy-
sis [14] of parallel Λ-type memory capacity, performed
in the paraxial approximation for a realistic (cylindrical)
shape of atomic ensemble, has revealed a universal role of
the cell optical depth and of the Fresnel number F for a
wide range of these parameters. Storage and retrieval of a
set of transverse modes in the orbital angular momentum
domain was demonstrated experimentally [15].

In this paper we elaborate a model of addressable par-
allel cavity-based quantum memory for light.

The use of optical cavity allows for smaller optical
depth of storage medium [16,17] and makes it possible
to control the memory parameters through modulation of
the atom-cavity coupling or detuning [18,19] We consider
a high-quality ring single-port cavity with a large num-
ber of transverse cavity modes and with an ensemble of
motionless atoms with long-lived ground state spin levels,
confined inside the cavity.

Having in mind possible applications for, e.g., quan-
tum repeaters, we concentrate on the addressability of our
memory, that is, on its handiness for the read-out “on de-
mand” of a given quantized signal mode specified by its
transverse index and position in time. For storage medium
we use the configuration of quantum volume hologram
of [10,11], extended to the case of tunable propagation
direction of classical control field in order to provide the
on demand read-out.

The use of multi-atomic ensemble which occupies a sig-
nificant part of the cavity volume, as opposed to variety of
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single-atom microcavity-based memories, makes it possi-
ble to achieve storage in multiple spatial modes of the
collective spin and provides sensitivity to the control
field propagation direction. In particular, by using non-
collinear signal and pump waves with time-dependent rel-
ative propagation angle one can store and retrieve tempo-
ral shape of the signal with some analogy to the controlled
reversible inhomogeneous broadening (CRIB) based mem-
ories, as discussed in detail in reference [20].

In what follows we reveal two spatial configurations
both allowing for 2D addressability of the memory. We
demonstrate that for the geometries close to the co- and
counter-propagating illumination by the pump wave, one
can retrieve into a high-quality output port any of stored
signal mode specified by its 2D transverse index. In case
of side illumination, the on-demand retrieval of the mode
specified by one component of transverse index and by its
position in time sequence is possible.

Another issue we address here is the optimal shap-
ing of the pump and the signal pulses in time. Since the
storage of the relatively short input signals might be of in-
terest in order to achieve better memory capacity, we do
not apply here the “bad cavity” limit and examine stor-
age of spatially multimode signals of given finite duration
comparable with the cavity decay time.

In order to effectively excite a high-quality cavity with
active medium inside, one has to minimize reflection of
the input signal during the write-in. This can be achieved
by the impedance matching, which implies matching of
the absorption by medium, placed inside the cavity, with
the cavity losses. This approach works perfectly in the
bad cavity limit for the spin, the atomic frequency comb
(AFC) [21], and the CRIB [22] memories. Another ap-
proach is provided by the time-reversal operation [17,18],
developed in the theory of linear filtering [23], where the
input signal is time-reversed with respect to the pulse
emitted from the memory. In both methods a problem
of optimal time shape of the light-matter coupling arises.

We demonstrate that in the impedance matching ap-
proach one can find the time shape of the coupling (ac-
tually of the pump field) such that the effectively stored
signal has smooth form, suited for possible applications,
for transverse modes within the diffraction limited angle.
On the other hand, the optimal write-in efficiency for given
signal duration is achieved by the time-reversal excitation
for the coupling temporarily off (“empty” cavity), followed
by fast excitation transfer from the quantized intracavity
field to the collective spin. In the bad cavity limit the re-
flection losses are eliminated in both modes of the memory
operation.

The paper is organized as follows. In Section 2 we in-
troduce our parallel quantum memory scheme in cavity
configuration and demonstrate 2D transverse addressabil-
ity of the scheme for the co- and counter-propagating, with
respect to quantized signal, pump wave. In Section 3 we
consider memory configuration, where the classical pump
field illuminates the memory cell from orthogonal side di-
rection, as shown in Figure 2. The 1D transverse address-
ability and the 1D addressability in time domain (that is,

Fig. 1. Schematic of addressable cavity based parallel quan-
tum memory for the counter-propagating illumination.

the possibility to retrieve on demand of a signal from time
sequence) are demonstrated.

The write-in efficiency for time-reversal approach in
dependence on transverse momentum of the input signal
spatial modes is analyzed in Section 4. A comparison with
the impedance matching method is given. In Section 5
we come to conclusion. In Appendix A we briefly outline
the effect of finite transverse size of the intracavity field
patterns, and in Appendix B we relate the problem of
optimal efficiency of our memory to the dynamics of the
excitations number by the time-reversed evolution, and
argue in favor of time-reversal optimization for the specific
mode of light-matter coupling control, described above.

2 Memory scheme and 2D addressability

The scheme of the memory is shown in Figure 1.
The spatially multimode input signal is stored in a spa-

tially distributed ensemble of motionless atoms. The stor-
age medium is placed inside a high-quality single-port ring
cavity. The atoms with angular momentum of J = 1/2
both in the ground and in the excited states are located at
random positions. The long-lived ground state spin of an
atom Ja is initially oriented along the constant magnetic
field in the vertical direction x. The atomic spins rotate
around the vertical axis with a circular frequency Ω.

The input signal wave, carrying an optical image or
2D data set, is a weak quantized y-polarized off-resonant
field at frequency ωs entering the cavity in +z direction.
This spatially multimode input field with the slowly vary-
ing amplitude A(in)(ρ, t) at the input cavity port, where
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ρ = {x, y} – transverse coordinate, is considered in the
paraxial approximation.

In this Section we consider the co- and counter-propa-
gating geometry, where classical off-resonant x-polarized
plane pump wave at frequency ωp with the slow ampli-
tude Ap(t), assumed to be real, is allowed to illuminate
the medium in a direction close to z or −z, similar to
quantum volume hologram of [10]. The Raman resonance
condition for the memory is ωs = ωp+Ω, and for the light-
matter entanglement is ωs = ωp −Ω. We assume here the
entanglement frequency band to be out of resonance with
the cavity frequency ωc.

We start from the quantum non-demolition (QND)
light-matter interaction which leads [1] to the following
basic effects: (i) the Faraday rotation of light polariza-
tion due to longitudinal quantum z-component of collec-
tive atomic spin in a given location; and (ii) the atomic
spin rotation, caused by the unequal light shifts of the
ground state sub-levels with mz = ±1/2 in the presence of
quantum fluctuations of circular light polarizations. Note
that for the time-dependent pump field the light shifts
induced by classical field itself are compensated in the
J = 1/2 ↔ J = 1/2 levels scheme. The relevant part of
the Hamiltonian is

H =
2πωs|d|2

(ωeg − ωs)L

∫
V

dr
∑

a

Ja
z (t)Sz(r, t)δ(r − ra). (1)

Here ωeg is the frequency of atomic transition, L is the ring
cavity length, d is the dipole matrix element, Ja

z and Sz

are z-projections of the ground state atomic spin and the
Stokes vector. For the intracavity quantized field, which is
assumed to be spatially multimode in transverse direction
but corresponds to a single longitudinal mode, we use the
commutation relation

[A(ρ, t), A†(ρ ′, t)] = δ(ρ − ρ ′), (2)

where A†A gives the photon number per cm2 of the cavity
cross-section. For the pump field amplitude we use the
same units, and for the input signal field the commutation
relation reads,

[A(in)(ρ, t), A(in)†(ρ ′, t′)] = δ(ρ − ρ ′)δ(t − t′), (3)

where A(in)†A(in) is the input photon number per cm2 s.
In order to make possible the addressable read-out of

the memory, we consider the pump wave propagation di-
rection slightly different from z or −z. We introduce the
transverse pump wave momentum qp in the {x, y} plane,
where qp/kp � 1, and assume kp = {qpx, qpy, fgkp‖}. Here
fg is the geometric factor, fg = ±1 for the pump wave
propagating close to ±z direction. The cavity field ampli-
tude is:

Ap(t) exp{i(fgkp‖z + qpρ − ωpt)}ex

+ A(ρ, t) exp{i(ksz − ωst}ey, (4)

where A(ρ, t) is the weak quantized signal field. The
Stokes vector z-component oscillates in time at frequency

Ω due to beatings between the pump and the signal wave,

S(c)
z (z, ρ, t) = 2Ap(t)Im[A(ρ, t)

× exp{i[(ks − fgkp‖)z − qpρ − Ωt]}]. (5)

The density of the ground state collective spin is J(r) =∑
a Jaδ(r − ra). The averaged over random positions of

the atoms commutation relation for the y, z components
of the collective spin is

[Jy(r), Jz(r ′)] = i
∑

a

〈Ja
x 〉δ(r − ra)δ(r ′ − ra)

a

= ina〈Ja
x 〉δ(r − r ′). (6)

Here na is the average density of atoms. The field-like
variable for the spin subsystem,

B(r, t) = {Jy(r, t) + iJz(r, t)}/
√

2na〈Ja
x 〉,

obeys the standard boson commutation relation:

[B(r, t), B†(r ′, t)] = δ(r − r ′). (7)

In view of the fact that the atoms are prepared in the spin
up state, the operator B† can be considered as the creation
operator for atoms in the spin down state.

The evolution of our memory is described by the
standard “in-out” relations for optical cavity taking into
account diffraction, the effective QND interaction (1),
and the interaction of collective atomic spin with con-
stant magnetic field described by the Hamiltonian den-
sity �ΩB†(r, t)B(r, t). Using in the Heisenberg picture
the commutation relations (2) and (7), we arrive at the
following equations for the field and atomic variables,

∂A(ρ, t)
∂t

=
[
i

(
ωs − ωc +

c

2kc
∇2

⊥

)
− C

2

]
A(ρ, t)

+
√

CA(in)(ρ, t) − ik̃(t)

×
∫

L

dz
(
[B(z, ρ, t) − h.c.]

× exp{i[−(ks − fgkp‖)z + qpρ + Ωt]}
)
,

(8)
∂B(z, ρ, t)

∂t
= −iΩB(z, ρ, t) − ik̃(t)

× [A(ρ, t) exp{i[(ks − fgkp‖)z

− qpρ − Ωt]} − h.c.]. (9)

Here ωc is the cavity frequency, C – cavity decay rate, the
light-matter coupling parameter is given by:

k̃(t) =
πωs|d|2

�(ωeg − ωs)L

√
2na〈Ja

x 〉Ap(t). (10)

We consider the amplitude A(ρ, t) as slow in the frame ro-
tating at ωs = ωp+Ω and constant along z, thus excluding
the entanglement frequency sideband. This is consistent
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with the equations above if one introduces the slow in time
and constant along z collective spin amplitude B(ρ, t),

B(z, ρ, t) =
1√
Lz

B(ρ, t) exp{i[(ks−fgkp‖)z−Ωt]}+. . . ,

(11)

B(ρ, t) =
1√
Lz

∫
Lz

dzB(z, ρ, t)

× exp{−i[(ks − fgkp‖)z − Ωt]}. (12)

Here “. . .” stands for the contribution of other longi-
tudinal modes needed for consistency with (7), Lz is
the atomic ensemble length in z-direction. We assume
that the pump wave propagation angle is small, when
(kp−kp‖)Lz � 2π, and substitute kp‖ → kp in (12). Since
kp‖ ≈ kp

(
1 − q2

p/2k2
p

)
, this implies qp �

√
2πkp/Lz.

Hence, the amplitude B(ρ, t) does not implicitly depend
on qp and one can apply the definition above when the
pump wave transverse momentum qp is different for the
write-in and the readout stages. The commutation rela-
tion for this amplitude,

[B(ρ, t), B†(ρ ′, t)] = δ(ρ − ρ ′), (13)

is similar to that of the intracavity quantized field (2), and
B†(ρ, t)B(ρ, t) corresponds to the number of flipped spins
per cm2 of the cavity cross section.

Next, we substitute (12) into the evolution equations,
retain only the slow in time (on the scale 1/Ω) and in the
longitudinal direction z (on the scale λs = 2π/ks) contri-
butions, and go over to the Fourier domain in transverse
dimension by introducing the amplitudes

a(q, t) =
∫

dρ A(ρ, t)e−iq·ρ,

and similar for b(q, t) and a(in)(q, t). We arrive at the
evolution equations of the form

∂a(q, t)
∂t

=
[
i

(
ωs − ωc −

q2c

2kc

)
− C

2

]
a(q, t)

− ik(t)b(q − qp, t) +
√

Ca(in)(0, q, t),
(14)

∂b(q − qp, t)
∂t

= −ik(t)a(q, t). (15)

The coupling constant

k(t) = k̃(t)
√

Lz, (16)

gives the frequency of state exchange between the cavity
fields A(ρ, t) and B(ρ, t). For both geometries, fg = ±1,
the evolution equations and the coupling constant look
similar, but the signal wave is coupled to different degrees
of freedom of the collective spin.

The equations above apply both to the write-in and
the readout stages of the memory and demonstrate the
transverse 2D addressability of our scheme. By choosing
the transverse momentum qp (i.e. the propagation angle)

Fig. 2. Addressability in time domain by the side illumination.

of the pump wave, one couples the intracavity quantized
field amplitude a(q, t) with the collective spin amplitude
b(q − qp, t), as seen from equations (14) and (15). This
makes it possible to readout in a given direction within
the angle range supported by the cavity (see Sect. 4) any
transverse spatial mode of the collective spin during the
retrieval stage of the memory.

In this consideration we have exploited the basis of
plain waves with single transverse momentum. This is
common approximation in the limit of wide-aperture sys-
tems. In Appendix A we present some estimates for more
realistic configuration with a wide-aperture near-planar
cavity and finite transverse size of the intracavity field
patterns.

The multivariate nature of the memory together with
the addressability makes it advantageous for use in quan-
tum repeaters. One can store in the memory multiple
transverse modes and wait for the outcome of parallel en-
tangling Bell-type measurement, performed at a remote
station. In case of success, the relevant transverse collec-
tive spin mode is retrieved into a high quality output chan-
nel with the use of the Fourier processor or another device.
This promises a speed-up of quantum repeater protocol by
a factor proportional to the number of stored modes [7].

3 Memory addressability by side illumination

Similar to classical volume hologram, our memory allows
to write and retrieve the signal wavefronts by illuminating
the memory cell with the pump wave propagating at arbi-
trary relative angle. It was shown [20] that by using non-
collinear signal and pump waves with the time-dependent
relative propagation angle one can reproduce by retrieval
the temporal shape of the signal with some analogy to
CRIB based memories.

In this section we extend our model to the close to
orthogonal side illumination in +y direction, as shown in
Figure 2, and demonstrate its 2D addressability in space-
time domain for the short time restricted signal pulses.
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Similar to Section 2, the x-polarized classical pump
wave is allowed to have small transverse momentum kp⊥
in {x, z} plane, where kp⊥ � kp, and kp = {kpx, kp‖, kpz}.
The expressions for the cavity field amplitude and the
Stokes vector z-projection, substituting (4) and (5), are

Ap(t) exp{i(kp‖y + kpxx + kpzz − ωpt)}ex

+ A(ρ, t) exp{i(ksz − ωst)}ey, (17)

S(s)
z (z, ρ, t) = 2Ap(t)Im[A(ρ, t)

× exp{i(ksz − kp‖y − kpxx − kpzz − Ωt]}]. (18)

The memory evolution equations are derived in the same
steps as in Section 2 by using the QND Hamiltonian
and the commutation relations. The only distinction from
equations (8) and (9) is due to the spatial modulation
factors. Assume for kpz one of the values k

(n)
pz = 2πn/Lz,

where n = 0,±1, . . . The slow in {x, y} plane and in time
collective spin amplitude Bn(ρ, t) is now related to the
local amplitude B(z, ρ, t) as follows,

B(z, ρ, t) =
1√
Lz

Bn(ρ, t)

× exp{i[(ks − k(n)
pz )z − kp‖y − Ωt]} + . . . ,

(19)

Bn(ρ, t) =
1√
Lz

∫
Lz

dzB(z, ρ, t)

× exp{−i[(ks − k(n)
pz )z − kp‖y − Ωt]}. (20)

It is evident from (19) that the interference pattern gener-
ated in the medium is now oriented as shown in Figure 2,
and at the readout stage the quantized field can be viewed
to as produced by the pump wave scattering on this spa-
tial structure.

For small enough deviations of the pump propagation
direction from perpendicular to {x, z} plane, we assume
|kp − kp‖|Ly � 2π and substitute in the equations above
kp‖ → kp. Since kp‖ ≈ kp(1 − k2

p⊥/2k2
p), this implies

kp⊥ �
√

2πkp/Ly. Similar to Section 2, the amplitude
Bn(ρ, t) does not implicitly depend on kpx and one can
apply the definition above when the pump wave transverse
momentum kpx is different for the write-in and the readout
stages. Moreover, the collective spin spatial modes spec-
ified by (20) for different pump wave directions in {y, z}
plane (that is, different n’s) are orthogonal, and we arrive
at the commutation relation

[Bn(ρ, t), B†
m(ρ ′, t)] = δ(ρ − ρ ′)δnm. (21)

Following the same steps as in Section 2, we obtain the
memory evolution equations, valid for both the write-in
and retrieval, similar to (14) and (15), where one sub-
stitutes b(q − qp, t) → bn(q − exkpx, t), with the same
coupling constant.

In space domain the memory demonstrates the 1D ad-
dressability: by changing from the write-in to the retrieval
stage the pump wave propagation direction in (x, y) plane,

one can on demand change the qx component of the re-
trieved signal transverse momentum.

Since for given k
(n)
pz the light-matter coupling involves

one of the independent longitudinal modes of the collec-
tive spin, the memory is able to store at the same time
many signals from a time sequence, given each signal was
written with proper pump wave direction in the {y, z}
plane. For the retrieval on demand of a given stored sig-
nal from the sequence, the pump wave of the relevant
propagation direction is used. The number of addressable
longitudinal modes of the matter is limited by the con-
dition kp⊥ �

√
2πkp/Ly, where k

(n)
pz = 2πn/Lz, and is

estimated as 2|n| � 2Lz/
√

λpLy.

4 Write-in efficiency and capacity

Given one neglects the atomic relaxation, the deteriora-
tive effect on efficiency in the cavity-based memory is due
to the signal field reflection from the input mirror. For the
slow as compared to the cavity decay time ∼1/C signals
the memory operation is typically considered in the bad
cavity limit, where one can suppress the reflection by us-
ing the cavity impedance matching. For the time restricted
signals two basic approaches were elaborated: (i) the time
reversal method, where temporal profile of the input sig-
nal is taken as the inverted in time decay pattern of the
memory; and (ii) the approach based on the control of the
interaction parameters which provide minimal reflection
for a given temporal shape of the input signal (one could
call the last one a dynamical impedance matching).

In Appendix B we present a reasoning which shows
that for the given signal duration T the optimal efficiency
is achieved by the time reversed input signal given the fol-
lowing mode of the memory operation is used: the light-
matter coupling is temporarily switched off, and after the
cavity is excited by the signal, the coupling is applied in
the form of a short π-pulse, which swaps the intracavity
signal to the collective spin. In what follows we examine
the memory efficiency in dependence of the signal dura-
tion and of the transverse mode index q for this mode
of operation, and bear comparison with the efficiency for
the time-restricted smooth signal found in the impedance
matching approach.

A natural measure for time intervals is in units of
the cavity decay time 1/C. Let us introduce dimension-
less variables Ct = τ , CT = T , (ωc − ωs)/C = Δ,
Δ̃(q) = Δ + q2/q2

c , where q2
c = 2kcC/c, and qc is the spa-

tial bandwidth of the cavity due to diffraction. We denote
the intracavity amplitudes as:

a(q, t) = α(q, τ), b(q, t) = β(q, τ),

and introduce the free space “in” (“out”) amplitudes

a(in)(0, ρ, t)/
√

C = α(in)(0, ρ, τ),

such that α(in)†α(in) is the density of quanta per cm2 per
unit time,[

α(in)(0, ρ, τ), α(in)†(0, ρ ′, τ ′)
]

= δ(ρ−ρ ′)δ(τ−τ ′). (22)
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The evolution equations, including that for the outgoing
field, are:

∂α(q, τ)
∂τ

= −
[
iΔ̃(q) +

1
2

]
α(q, τ)

− iκ(τ)β(q, τ) + α(in)(0, q, τ),
∂

∂τ
β(q, τ) = −iκ(τ)α(q, τ),

α(out)(0, q, τ) = −α(in)(0, q, τ) + α(q, τ). (23)

The dimensionless coupling parameter is κ(τ) = k(t)/C,
small transverse momentum of the pump wave is set to
zero for simplicity. Assume the incoming signal of dura-
tion T to be classical field of the time reversed exponential
shape,

α(in)(q, τ) =

{
α(in)(q, 0)eτ/2 T ≥ τ ≥ 0,

0 0 > τ, τ > T .
(24)

The cavity field evolution equation (23) for the “coupling
off” stage, κ = 0, is easily solved. We define the efficiency
η(q) for a given transverse index q as the ratio of energy
stored by the time T in the cavity mode q to the energy
of incoming signal for the same q. After simple calculation
we arrive at

η(q) =
1

1 + Δ̃2(q)

⎛
⎝1 − e−T + 2

1 − cos
(
Δ̃(q)T

)

eT − 1

⎞
⎠ .

(25)
Provided the state transfer at τ → T to the collective
spin is performed by modulation of the coupling parameter
κ(τ) in form of a short π-pulse of duration Δt, where
L/c � Δt � 1/C, we consider the result (25) as the write-
in efficiency of the memory. The condition Δt � 1/C
implies that the transverse signal field modes within the
cavity bandwidth are effectively transferred, and the off-
resonant longitudinal modes are not involved for Δt much
exceeding the round-trip time L/c.

The efficiency dependence of the time reversed signal
duration (in units of the cavity decay time) and of the ef-
fective mismatch of inclined waves Δ̃ → q2/q2

c for ωc = ωs,
is shown in Figure 3. For large enough signal duration,
T ≥ 1, the transverse modes with q ≤ qc are written with
the efficiency exceeding 0.5. For the beamsplitter type
memories this is sufficient for the storage preserving pos-
itive coherent information of [24,25]. The resolving power
in space of our memory is characterized by the transverse
size d ∼ 2π/qc ∼ 2π

√
c/C2kc of an input image element

which can be effectively stored. Since c/C = Leff is the
length passed by light inside the cavity during the decay
time, the estimated size d and the number N = S⊥/d2 of
stored transverse modes, where S⊥ is the transverse cross-
section of atomic ensemble, are limited by diffraction at
this effective length. The plot Figure 3 also demonstrates
that good multimode efficiencies are available for the sig-
nal duration of the order of few cavity decay times, and it
is possible to operate the memory outside the bad cavity
limit T → ∞.

Fig. 3. Write-in efficiency η(q) by the optimal time-reversal
operation. Here q2/q2

c = Δ̃ is the propagation angle dependent
frequency mismatch, CT = T – normalized signal duration.

Fig. 4. Write-in efficiency by the impedance matching
operation.

For comparison we plot in Figure 4 write-in efficiency
for the time-restricted smooth symmetrical input signal
of the form ∼sin(πτ/T ). Storage and retrieval of spatially
multimode signals of the on-demand time shape for similar
parallel memory configuration was considered [26] in the
impedance matching approach, extending that of [27] onto
the multiatomic storage medium. In reference [26] the time
shape of the coupling parameter κ(t) is estimated which
matches the input signal (see Fig. 5). In agreement with
the consideration given in Appendix, the memory opera-
tion with the time-reversal excitation of “empty” cavity
followed by fast excitation transfer to the collective spin
is more efficient, but does not allow for the control of the
signal shape.
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Fig. 5. Time shape of the coupling parameter κ(τ ) (bold line)
which matches the input signal ∼ sin(πτ/T ) (thin line) for T =
10, arb. units

5 Conclusion

We have elaborated theoretically a model of parallel
cavity-based quantum memory for light, able to store mul-
tiple transverse spatial modes of the input light signal of
finite duration. Having in mind possible applications for,
e.g., quantum repeaters, we have revealed the addressabil-
ity of our memory, that is, its handiness for the read-out
on demand of a given transverse quantized signal mode
and, in one of configurations, of a given signal from time
sequence. The addressability is achieved by making use of
different spatial configurations of the pump wave during
the write-in and the readout. We have estimated the mem-
ory capacity in terms of the number of efficiently stored
transverse and temporal modes. For transverse modes the
capacity is limited by diffraction at the propagation length
within the cavity lifetime.

We have compared methods of the memory control
for time restricted input signals. For the signal durations
of the order of few cavity decay times, better efficiency
is achieved when one excites the cavity with zero light-
matter coupling and finally performs fast excitation trans-
fer from the intracavity field to the collective spin. On
the other hand, the light-matter coupling control in time,
based on impedance matching, allows to store and re-
trieve time restricted signals of the on-demand smooth
time shape.

This research was supported by the Russian Foundation
for Basic Research under the projects 12-02-00181a and 13-
02-00254a. The authors acknowledge Saint-Petersburg State
University for research Grant 11.38.70.2012, and the sup-
port from the EU-Russia program ERA.Net Rus under the
NANOQUINT project.

Appendix A

In this Appendix we briefly outline the effect of finite
transverse size of the intracavity field patterns in our
cavity-based memory.

The basis of single transverse momentum waves we ex-
ploit in this work is widely used as a common approxima-
tion in the theory of spatial phenomena in wide-aperture

cavity-based systems, such as nonlinear transverse pat-
terns (transverse optical solitons, domain walls etc.) and
quantum imaging [28,29]. In our paper we address just this
limit: a wide-aperture cavity with high transverse mode
degeneracy.

As known ([30], Chap. 16), transverse multimode cav-
ity in Gaussian approximation has equally spaced in fre-
quency domain eigenmodes of the HG (Hermite-Gaussian)
profile in both transverse directions. Consider for simplic-
ity a wide aperture near-planar linear cavity of length L
with the mirrors of radius R � L. The essential param-
eters are the waist radius w, where kw2 =

√
RL, and

frequency spacing ΔωHG = c/
√

RL (here k is the wave
number). A transverse field profile, constructed as a super-
position of the HG modes, demonstrates oscillatory evo-
lution in both transverse directions at frequency ΔωHG.

As a more realistic pattern, close to single transverse
momentum wave of our paper, one can consider the prod-
uct of corresponding plane wave profile and Gaussian en-
velope of waist w. Though such a pattern is not the cavity
transverse eigenmode, it can be represented as a coherent
state-like superposition of the HG modes of the relevant
transverse coordinate. As we shall discuss elsewhere, the
analogy with the coherent state-like packets of the HG
profiles allows one to estimate the variance 〈Δn2〉 of the
index n of the HG eigenmodes that compose the pattern
with given average 〈n〉 via√

〈Δn2〉 ∼
√
〈n〉.

That is, mean energy of the pattern in frequency units
is 〈n〉ΔωHG, while its frequency width is

√
〈n〉ΔωHG.

A near-resonant signal field effectively excites patterns
within the cavity linewidth, 〈n〉 ∼ C/ΔωHG. One can
achieve the regime of many transverse modes, 〈n〉 � 1, by
using the mirrors of large enough radius with ΔωHG � C.

In the regime of many transverse modes we consider
here, the frequency width

√
〈n〉ΔωHG of the introduced

above quasi-plane modes is small as compared to C.
Hence, the frequency width can be neglected if the cav-
ity is excited with the time-restricted signal of duration
T ≥ 1/C, when one can consider transverse plane waves
modulated with Gaussian envelope as effective eigenmodes
of the scheme.

Appendix B

In what follows we relate the problem of optimal efficiency
of the memory to the dynamics of excitations number
by the time-reversed evolution, and show that the time-
reversal approach based on the input signal interaction
with “empty” cavity followed by fast excitation transfer
to atoms can be considered as the most efficient for a given
input signal duration.

Since the incoming, the outgoing and the cavity field
together with the collective spin wave form a closed system
where total excitation number is conserved, the general
solution of the basic evolution equations (23) is repre-
sented by a unitary transformation, which one can con-
sider in classical picture. We split the time interval (0,T )
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to N � 1 intervals of duration ε = T /N , centered at τn,
n = 1 . . . N , and consider discrete sets of the incoming and
the outgoing signal amplitudes: α̃(in)(τn) =

√
εα(in)(τn),

and similar for the outgoing field. The transverse mode in-
dex is omitted for brevity and will be restored later. The
factor

√
ε allows to evaluate the incoming excitation num-

ber at the nth interval as |α̃(in)(τn)|2. If at the beginning
(τ = 0) and at the end (τ = T ) of the write-in cycle one
accounts for the non-zero collective spin and the cavity
field amplitudes, the (2 + N)-component column vectors
of the form

α̃(in) =
(
β(0), α(0),

{√
εα(in)(τn)

})
,

α̃(out) =
(
β(T ), α(T ),

{√
εα(out)(τn)

})
, (B.1)

represent the essential sets of the initial and final
amplitudes.

The unitary amplitudes evolution matrix is introduced
via

α̃(out) = Û α̃(in). (B.2)

As it follows from the orthogonality and normalization of
the rows of Û , the initial vector of amplitudes which allows
to excite the collective spin with unit efficiency (that is,
gives α̃(out) = (1, 0, {0}) is composed by using the row β

of Û ,
α̃(in) ∼

(
U∗

ββ, U∗
βα,

{
U∗

βm

})
,

where m = 1 . . .N . By the write-in we assume that the ini-
tial local amplitudes β(0), α(0) have zero values, and op-
timal normalized initial vector of amplitudes which gives
maximal β(T ) and, hence, maximal efficiency, is propor-
tional to the reduced row of Û ,

α̃(in) =
1√

1 − (|Uββ |2 + |Uβα|2)
(
0, 0,

{
U∗

βm

})
. (B.3)

The collective spin wave amplitude β(q) and its excitation
efficiency by the signal wave q are found by using (B.3)
and unit norm of the row β,

η = |α̃(out)
β |2 = 1 −

(
|Uββ|2 + |Uβα|2

)
. (B.4)

We have related in general form the optimal memory ef-
ficiency for a given transverse mode of the signal and for
a given time shape of the coupling parameter to the val-
ues of two elements of the evolution matrix (the Green
functions) of the system. Since in our parallel memory
the evolution matrix depends on the signal wave trans-
verse momentum, Û → Û(q), the optimal input signal
shape (B.3) is in general case q-dependent (note that in
Sect. 4 the input signal optimized for q = 0 is considered).

One can rewrite the efficiency (B.4) as:

η(q) = 1 −
(∣∣∣U †

ββ(q)
∣∣∣2 +

∣∣∣U †
αβ(q)

∣∣∣2
)

. (B.5)

Here the Û †(q) evolution matrix describes the inverted in
time evolution, and the sum in the right side of (B.5) gives,

by the definition of the evolution matrix elements, the
number of cavity excitations by τ = 0 given the inverted
in time evolution started at T from the specific initial
condition, α̃(out) = (1, 0, {0}), when the collective spin is
excited and other amplitudes are equal to zero,

|β(q, T )| = 1, α(q, T ) = 0,
{

α(out)(q, τn)
}

= 0.

(B.6)
The inverted in time evolution equations are derived
from (23),

∂α(q, τ−)
∂τ−

=
[
iΔ̃(q) − 1

2

]
α(q, τ−)

+ iκ(τ−)β(q, τ−) + α(out)(0, q, τ−),

∂

∂τ−
β(q, τ−) = iκ(τ−)α(q, τ−),

α(in)(0, q, τ−) = −α(out)(0, q, τ−) + α(q, τ−), (B.7)

where τ− = T − τ , and the evolution takes place from
τ− = 0 to τ− = T . By transforming (B.7) to equations for
the excitation numbers we arrive at

d

dτ−

(
|β(q, τ−)|2 + |α(q, τ−)|2

)

= −|α(q, τ−)|2 + 2Re
[
α∗(q, τ−)α(out)(0, q, τ−)

]
. (B.8)

Next, we perform time integral and account for (B.6). This
yields for the write-in efficiency

η(q) = 1 −
(
|β(q, T )|2 + |α(q, T )|2

)

=
∫ T

0

dτ−|α(q, τ−)|2. (B.9)

Though this equality does not explicitly depend on κ(τ),
it is valid for any time shape of the coupling constant.

Note that equations (B.7) of evolution in time τ− for
the initial condition (B.6) we apply, differ from equa-
tions (23) of evolution in physical time τ for the initial
condition of the form β(q, τ = 0) = 1, α(q, τ = 0) = 0,
α(in)(q, τ = 0) = 0, only by inversion of the frequency
mismatch and the coupling constant sign.

That is, we can think about the optimization of effi-
ciency (B.9) in terms of equivalent physical evolution, as if
τ− were physical time, with the initially excited collective
spin wave, zero initial intracavity field, and zero incom-
ing field amplitude, when interference at the input mirror
is eliminated. Since the dimensionless rate of the cavity
decay is equal to unity, the right side of (B.9) gives the
energy leaking from the cavity by τ− = T , and is evidently
maximized if one performs at τ− = 0 fast transfer of exci-
tation from atoms to the intracavity field and then allows
for energy to leak from “empty” cavity. In terms of the
physical time τ = T − τ− this is just the optimal mode of
memory operation discussed in Section 4.
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